
Performance Counter
Monitoring for the

Blue Gene/Q Architecture
Heike Jagode

Innovative Computing Laboratory
University of Tennessee, Knoxville

http://icl.eecs.utk.edu/papi/

ESP Code for “Q” Workshop
Argonne National Laboratory

April 30 – May 2, 2012

Overview
1.  Introduction

2.  PAPI overview

3.  PAPI for BG/Q
•  Processor Unit (PUnit) Component

•  L2 Unit Component

•  I/O Unit Component

•  Network Component

•  Compute Node Kernel Unit (CNKUnit) Component

4.  Example: 3D-FFT on Q

Introduction

•  Very little effort was put into HW performance monitoring
tools for the BG/Q predecessor BG/P

•  HPC community was left behind with rather poor and
incomplete methods

•  To eliminate this limitation, for BG/Q we planned carefully
and collaborate closely with IBM’s Performance Group

Result:
•  Added 5 new Components to PAPI to support HW

performance monitoring for the BG/Q network, the I/O
system, the Compute Node Kernel in addition to the
processing cores

•  Middleware that provides a consistent and efficient programming
interface for the performance counter hardware found in most major
microprocessors.

•  Started as a Parallel Tools Consortium project in 1998

•  Goal was to produce a specification for a portable interface to the hardware
performance counters.

•  Countable events are defined in two ways:

•  Platform-neutral Preset Events (e.g., PAPI_TOT_INS)
•  Platform-dependent Native Events (e.g., L3_CACHE_MISS)

•  Preset Events can be derived from multiple Native Events
(e.g. PAPI_L1_TCM might be the sum of L1 Data Misses and L1
Instruction Misses on a given platform)

PAPI

Preset Events
•  Standard set of over 100 events for application performance tuning
•  No standardization of the exact definition
•  Mapped to either single or linear combinations of native events on

each platform
•  Use papi_avail to see what preset events are available on a given

platform

Native Events
•  Any event countable by the CPU
•  Same interface as for preset events
•  Use papi_native_avail utility to see all available native events

Use papi_event_chooser utility to select a compatible set of events

PAPI Hardware Events

Overview
1.  Introduction

2.  PAPI overview

3.  PAPI for BG/Q
•  Processor Unit (PUnit) Component

•  L2 Unit Component

•  I/O Unit Component

•  Network Component

•  Compute Node Kernel Unit (CNKUnit) Component

4.  Example: 3D-FFT on Q

PUnit Component
•  Each of the 18 A2 CPU cores has a local UPC module
•  Each of these modules provides 24 counters (14-bit) to

sample A2 events, L1 cache related events, floating
point operations, etc.

•  Local UPC module is broken down into 5 internal sub-
modules: FU, XU, IU, LSU and MMU

•  The sub-modules are transparently identifiable from the
PUnit event names (see next slide for examples)

à The BGPM PUnit interfaces with these modules
à PAPI uses the BGPM interface

PUnit Events (Native | Presets)

•  Currently, there are 269 native PUnit events available:

PUnit Events (Native | Presets)

•  Currently, there are 269 native PUnit events available:
 •  Out of 107 possible predefined events, there are currently 41

events available of which 12 are derived events:

L2 Unit Component

•  Shared L2 cache is split into 16 separate slices
•  Each of the 16 L2 memory slices has a L2 UPC module

that provides 6 counters (node-wide)

L2 Unit Native Events

•  Currently, there are 32 L2 Unit events available:

•  BG/Q processor has two DDR3 memory controllers, each
•  interfacing with eight slices of the L2 cache to handle their cache

misses (one controllers for each half of the 16 cores on the chip)
•  The counting hardware can either keep the counts from each

slice separate, or combine the counts from each slice into single
values (default)

•  The Message, PCIe, and DevBus module – which are
collectively referred to as I/O modules – provide together
43 counters (node-wide)

I/O Unit Component

I/O Unit Native Events
•  Currently, there are 44 I/O Unit events available
•  The three I/O sub-modules are transparently identifiable

from the I/O Unit event names

Network Unit Component

•  The 5D-Torus network provides a local UPC network
module with 66 counters - each of the 11 links has six
64-bit counters

•  As of right now, a PAPI user cannot select which network
link to attach to

•  Currently, all network links are attached and this is hard-
coded in the PAPI NWUnit component

àThe BGPM NWUnit interfaces with the network modules
à PAPI Network Unit Component interfaces with BGPM

Network Unit Native Events

•  Currently, there are 31 Network Unit events available

CNK Unit Component

•  CNK is the lightweight Compute Node Kernel that runs
on all the 16 compute cores

•  BGPM offers a “virtual” CNK Unit that has software
counters collected by the kernel
(kernel counter values are read via a system call)

•  Currently, there are 29 CNK Unit events available

Overflow and Multiplexing
Overflow:
•  Only the local UPC module, L2 and I/O UPC hardware

support performance monitor interrupts when a
programmed counter overflows

•  For that reason, only the PUnit, L2Unit, and I/OUnit
provide overflow support in BGPM and PAPI

Multiplexing:
•  PAPI supports multiplexing for the BG/Q platform
•  The BGPM PUnit does not directly implement

multiplexing of event sets; but, it does indirectly support
multiplexing by supporting a multiplexed event set type

Overview
1.  Introduction

2.  PAPI overview

3.  PAPI for BG/Q
•  Processor Unit (PUnit) Component

•  L2 Unit Component

•  I/O Unit Component

•  Network Component

•  Compute Node Kernel Unit (CNKUnit) Component

4.  Example: 3D-FFT on Q

BG/Q network
BG/L+P:
Compute nodes organized as a
3D-torus
MAIN FEATURE:
every node is connected to
its six neighbour nodes through
bidirectional links

To maintain application performance,
correct mapping of MPI tasks onto the
torus network is a critical factor

BG/Q network
BG/Q:
Compute nodes organized as a
5D-torus
MAIN FEATURE:
every node is connected to
its ten neighbour nodes through
bidirectional links

To maintain application performance,
correct mapping of MPI tasks onto the
torus network is a critical factor

Slide 21

3D FFT on BG/Q
•  Why multi-dimensional FFT ?

•  Computation performed in three single stages:

 Ax ,y ,z ∈ x, y, z ∈

∀ x, 0 ≤ x < L
∀ y, 0 ≤ y < M
∀ z, 0 ≤ z < N

Au ,v ,w := Ax ,y ,z exp −2π i
vy
M

⎛
⎝⎜

⎞
⎠⎟y=0

M−1

∑
1st 1D FT along y

exp −2π i

wz
N

⎛
⎝⎜

⎞
⎠⎟z=0

N−1

∑

2nd 1D FT along z

exp −2π i
ux
L

⎛
⎝⎜

⎞
⎠⎟x=0

L−1

∑

3rd 1D FT along x

Slide 22

2D Decomposition
MPI tasks organized in 2D virtual processor grid using
MPI Cartesian grid topology construct

Example: Low Level API
#include “papi.h”
#define NUM_EVENTS 2
char events[NUM_EVENTS] = { “PEVT_NW_USER_PP_SENT”,
 “PEVT_NW_USER_DYN_PP_SENT” };
int EventSet = PAPI_NULL;
long long values[NUM_EVENTS];

/* Initialize the Library */
retval = PAPI_library_init (PAPI_VER_CURRENT);
/* convert native events to PAPI code */
for(h = 0; h < NUM_EVENTS; h++)
 retval = PAPI_event_name_to_code(EventName[h], &events[h]);

/* Allocate space for the new EventSet and do setup */
retval = PAPI_create_eventset (&EventSet);
/* Add Flops and total cycles to the eventset */
retval = PAPI_add_events (EventSet, events, NUM_EVENTS);

/* Start the counters */
retval = PAPI_start (EventSet);

do_work(); /* What we want to monitor: MPI_Alltoall(..) */

/*Stop counters and store results in values */
retval = PAPI_stop (EventSet, values);

PAPI measurements
•  32 nodes:

•  512 MPI tasks, 2D virtual processor grid: { 8, 64 }
•  “PEVT_NW_USER_PP_SENT”: # of 32B user p2p packet chunks sent. Includes packets

 originating or passing through the current node.

A B C D E T

nodes 2 2 2 2 2 16

torus 0 0 0 0 1 -

PAPI measurements
•  32 nodes:

•  512 MPI tasks, 2D virtual processor grid: { 8, 64 }
•  “PEVT_NW_USER_PP_SENT”: # of 32B user p2p packet chunks sent. Includes packets

 originating or passing through the current node.

A B C D E T

nodes 2 2 2 2 2 16

torus 0 0 0 0 1 -

rank A B C D E T

0 0 0 0 0 0 0

64 0 0 1 0 0 0

128 0 1 0 0 0 0

192 0 1 1 0 0 0

256 1 0 0 0 0 0

320 1 0 1 0 0 0

384 1 1 0 0 0 0

448 1 1 1 0 0 0

Results rank A B C D E T

0 0 0 0 0 0 0

64 0 0 1 0 0 0

128 0 1 0 0 0 0

192 0 1 1 0 0 0

256 1 0 0 0 0 0

320 1 0 1 0 0 0

384 1 1 0 0 0 0

448 1 1 1 0 0 0

rank A B C D E T

0 0 0 0 0 0 0

64 0 0 0 0 0 1

128 0 0 0 0 0 2

192 0 0 0 0 0 3

256 0 0 0 0 0 4

320 0 0 0 0 0 5

384 0 0 0 0 0 6

448 0 0 0 0 0 7

Comm 8% 4x 8.4x 5.4x 3.6x

3D-FFT 9% 22% 12% 6% 6%

Results rank A B C D E T

0 0 0 0 0 0 0

64 0 0 1 0 0 0

128 0 1 0 0 0 0

192 0 1 1 0 0 0

256 1 0 0 0 0 0

320 1 0 1 0 0 0

384 1 1 0 0 0 0

448 1 1 1 0 0 0

rank A B C D E T

0 0 0 0 0 0 0

64 0 0 0 0 0 1

128 0 0 0 0 0 2

192 0 0 0 0 0 3

256 0 0 0 0 0 4

320 0 0 0 0 0 5

384 0 0 0 0 0 6

448 0 0 0 0 0 7

Comm 8% 4x 8.4x 5.4x 3.6x

3D-FFT 9% 22% 12% 6% 6%

Summary
•  Performance analysis tools for parallel applications running on

large scale systems rely on HW perf counters to gather perf
relevant data from the system

PAPI’s 5 new components for BG/Q
•  Enable HW perf counter monitoring for

•  Processing unit
•  5D Torus
•  I/O system
•  Compute Node Kernel

Very Early Access Validation Example:
•  3D-FFT kernel – instrumented with PAPI – for comm evaluation
•  5D torus network counters detect tons of inter-node

communications that were redundant

PAPI on VEAS / CETUS

•  Installed in /soft/perftools/papi
•  Utilities in bin directory

•  papi_avail , papi_native_avail , etc.
•  Run on compute node using qsub – e.g.,
 qsub -n 1 --mode c1 -t 10 papi_avail

•  Examples in /home/jagode/public
•  cd /home/jagode/public
•  cp –r papi <your_choice>
•  cd papi/src/ctests
•  Run on compute node using qsub – e.g.,
 qsub -n 1 --mode c1 -t 10 first

29

Acknowledgement
The general availability of PAPI for BG/Q – that can be utilized
immediately by end users – is due to a cooperative effort of

several parties.

A special acknowledgment
goes to the IBM performance team, especially

Roy Musselman
Kris Davis

for the careful planning long before the BG/Q release as well

as the close partnership and joint effort.

